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Abstract—Internet of things (IoT) is powering up smart
cities by connecting all kinds of electronic devices. The power
supply problem of IoT devices constitutes a major challenge in
current IoT development, due to the poor battery endurance as
well as the troublesome cable deployment. The wireless power
transfer (WPT) technology has recently emerged as a promising
solution. Yet, existing WPT advances cannot support free and
mobile charging like Wi-Fi communications. To this end, the
concept of mobile energy transfer (MET) is proposed, which
relies critically on an resonant beam charging (RBC) technology.
The adaptive (A) RBC technology builds on RBC, but aims
at improving the charging efficiency by charging devices at
device preferred current and voltage levels adaptively. A mobile
ARBC scheme is developed relying on an adaptive source power
control. Extensive numerical simulations using a 1, 000mAh Li-
ion battery show that the mobile ARBC outperforms simple
charging schemes such as the constant power charging, the
profile-adaptive charging, and the distance-adaptive charging in
saving energy.

Index Terms—Mobile energy transfer, Internet of Things,
Adaptive resonant beam charging

I. INTRODUCTION

Internet of things (IoT) is promising a smart and com-
fortable life by connecting IoT devices [1–4]. However, these
devices such as smart-phones, laptops, actuators, and sensors
are battery powered or wired [5–9]. To charge IoT devices
anytime anywhere, users may carry power cords or seek the
power outlets, which brings them inconveniences [10–13].
The power supply problem has become one of the critical
challenges in IoT [11, 14]. Therefore, the wireless power
transfer (WPT) technologies were advocated [15, 16].

Existing WPT technologies are mainly based on inductive
coupling, magnetic resonance, and magnetic induction [17].
Taking safety into consideration, these technologies only sup-
port charging devices with low power over short distances.
Users cannot get their devices charged safely over long
distances while in transit. To meet user-specific charging re-
quirements, we propose the concept of mobile energy transfer

The work of Q. Zhang, and Q. Liu was supported by the National Natural
Science Foundation of China Grant 61771344. The work of G. Wang and
G. B. Giannakis was supported partially by the National Science Foundation
under Grants 1514056, and 1711471. The work of J. Chen was partially
supported by the National Natural Science Foundation of China under Grants
U1509215, and by the Program for Changjiang Scholars and Innovative
Research Team in University (IRT1208). (Corresponding author: Qingwen
Liu.)

Q. Zhang and Q. Liu are with the College of Electronic and Information
Engineering, Tongji University, Shanghai 201800, China.

G. Wang and G. B. Giannakis are with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455,
USA (e-mail: gangwang@umn.edu; georgios@umn.edu).

J. Chen is with the State Key Lab of Intelligent Control and Decision of
Complex Systems, School of Automation, Beijing Institute of Technology,
Beijing 100081, China, and also with Tongji University, Shanghai 200092,
China (e-mail: chenjie@bit.edu.cn).

PV-
panel

Reflector R2Reflector R1

Transmitter

Power 

monitor

Power 

controller

Receiver

Feedback channel

DC-DC 

converter
Power 

source

+

-

Power

output

Gain 
medium

Resonant 
beam

Fig. 1 Standard ARBC system architecture. An ARBC system
consists of two spatially separated parts: an ARBC transmitter
and an ARBC receiver. The transmitter provides wireless
power for the receiver, and the receiver can be integrated into
the devices to be charged.

(MET) in this paper. MET aims at providing a ‘Wi-Fi-like’
charging service, enabling ‘safe anytime anywhere charging,’
so users do not need to worry about the battery endurance.

As an MET technology, resonant beam charging (RBC)
was introduced and developed in [17, 18]. To maximize
the RBC efficiency, the adaptive (A) RBC was proposed in
[19]. See Fig. 1 for a standard ARBC system architecture,
which consists of two spatially independent parts: an ARBC
transmitter and an ARBC receiver. Compared with the RBC
system, a power monitor and a power controller are augmented
to support adaptive power control through feedback. On this
basis, IoT devices equipped with ARBC receivers can be
charged with battery preferred currents and voltages, hence
charged with battery preferred power.

The ARBC procedure developed in [19] is outlined as
follows: i) The power monitor at the receiver gets the output
power, i.e., the battery preferred charging power, and feeds it
back to the power controller at the transmitter; ii) The power
controller informs the power source with the battery preferred
charging value; iii) The power source provides the battery
preferred power to the gain medium and stimulates out the
resonant beam; iv) The resonant beam transmits through the
air with some attenuation and arrives at the receiver; v) The
beam power is converted to the laser power, and subsequently
to the electric power; and, vi) After being converted to the
battery preferred charging current and voltage by the DC-DC
converter, the electric power can be used to charge the battery.

Figure 2 describes a representative ARBC application
scenario. In this ARBC system, multiple receivers can be
charged simultaneously by a single transmitter, so long as all
receivers are placed within the coverage of the transmitter.
In the indoor scenario, all electronic devices can be charged
by Transmitter-1, which is installed in a ceiling light. In the
outdoor setting, an unmanned aerial vehicles (UAV) is used as
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Fig. 2 Representative ARBC application scenarios. Both indoor and outdoor charging examples are shown. All receivers within
the coverage of the transmitter can be simultaneously charged. A UAV in an outdoor setting can be used as an ARBC relay
if integrated with both a transmitter and a receiver.

an ARBC relay [20, 21]. Within the coverage of Transmitter-
2, the UAV can be charged by the Transmitter-2, whereas it
can also work as a transmitter to charge devices within its
coverage, such as the smart-phone and the street lamp.

The ARBC performance is evaluated by analyzing a Li-
ion battery charging procedure; see [19] for details. The Li-ion
battery is charged from the empty state to the fully charged
state over a certain charging distance, namely the charging
distance between the transmitter and the receiver. However,
in our daily life, the battery requesting for charging services
can be at a random state of charge (SOC) rather than at the
running-out state of charge. The charging distance is modeled
time-varying during the charging procedure rather than treated
as a constant [22]. For different SOCs, the battery preferred
charging values are different, which will bring different source
power requirements. Moreover, for a certain source power, the
received power falls off with the increment of the charging dis-
tance. Take the daily charging requirements into consideration,
a mobile ARBC procedure, where the batteries at a random
SOC while in transit, is simulated to illustrate MET.

In a nutshell, the contributions of the present paper can
be summarized as follows:

c1) To charge IoT devices’ batteries safely over a long
distance in movement, we propose the concept of mobile
energy transfer (MET);

c2) To realize MET, we develop a novel mobile ARBC
scheme, which controls the source power at the transmitter
adaptively such that the charging target is charged at battery
preferred current and voltage levels; and,

c3) To assess the MET performance, we perform sub-
stantial numerical simulations on a randomly moving IoT
device’s Li-ion battery. Performance analysis suggests that
ARBC could save at least 35.1% source energy relative to
other simple charging schemes.

In the rest of this paper, the MET mechanism of ARBC
is detailed using a dynamically moving Li-ion battery in Sec-
tion II. The MET performance is evaluated through numerical
simulations on the mobile Li-ion battery in Section III. Finally,
the paper is concluded in Section IV, along with the outlook

for future research.

II. MOBILE ENERGY TRANSFER

RBC is a promising technology to realize WPT, which is
of great importance for wireless sensor network. ARBC, which
is based on RBC, can improve the charging efficiency. To
enable mobile ARBC, the source power is controlled to supply
the battery with its preferred charging current and voltage
in real time. A novel mobile ARBC scheme is developed
with an adaptive source power control. The source power
relies on the target output power of the ARBC system and
the relative charging distance between the transmitter and
the receiver. Commonly used in most IoT devices, the Li-
ion battery is taken as the charging target in this paper. The
target output power is the battery preferred charging power,
which is obtained numerically by fitting the Li-ion battery
charging profile on real data. Moreover, the charging distance
is modeled time-varying during the entire charging procedure.
Finally, we summarize the MET process of an ARBC system.

A. Mobile ARBC Scheme

In an RBC system, IoT devices are charged with the target
output power Po, which depends on the source electric power
Ps and the resonant beam transmission efficiency ηt, yet ηt
relies on the structure of the RBC system and the charging
distance between the transmitter and the receiver. The end-to-
end power relationship, namely the relationship between Po
and Ps, can be given by

Po = aηtPs + b (1)

where a and b are constant coefficients determined by the
structure of the RBC system (e.g., the size and reflectivity of
the reflectors, and parameters of the PV-panel, to name a few).

To enhance the energy efficiency of RBC, an initial
concept of ARBC was proposed in our precursors [18, 19], by
introducing adaptive source power control into RBC through
a feedback channel. In these previous works, only the output
power control is analyzed by simulating the battery charging



3

0 0.5 1 1.5 2 2.5 3 3.5 4

Charging time t (h)

0

0.2

0.4

0.6

0.8

1

1.2
C

ha
rg

in
g 

cu
rr

en
t I

 (
A

)
CC Stage CV Stage

Current
Voltage

2

2.5

3

3.5

4

4.5

C
ha

rg
in

g 
vo

lta
ge

 V
 (

V
)

Fig. 3 The Li-ion battery charging current and voltage profile.
Both the current and voltage vary with the charging duration.
At the beginning, the charging current is constant while the
voltage increases with the charging time. After some period,
the current drops sharply but the voltage is saturated.

over different distances. However, the key to realizing ARBC
lies in adaptively controlling the source power Ps to meet the
battery preferred output power Po.

From (1), Ps is determined by Po, the charging distance
d, and the other constant coefficients. We can conclude that
(e.g., [18, 19, 23])

Ps =
(Po −m)(1 + f)

2n(1− f)

(
e−2π r2

λ(l+d) − ln f

)
(2)

where m, f , n, and r are some constant coefficients. Specifi-
cally, m depends on the ARBC system structure, n is related
with the material and the structure of the system and the PV-
panel, f denotes the reflectivity of reflector R2, and r is the
radius of R1 and R2; λ captures the resonant beam wavelength,
l refers to the distance between the gain medium and the
reflector R1. For a certain ARBC system structure, λ and
l are constants. d is the distance between the gain medium
and the reflector R2, i.e., the charging distance between the
transmitter and the receiver. If the receiver keeps changing its
relative position to the transmitter in the ARBC system, d may
take different values.

B. Target Output Power

With regards to the source power Ps control, the value
of the target output power Po should be available. For an
IoT device, the target output power is the device’s battery
preferred charging power. For different types of batteries, the
preferred charging power Po is different. Even for batteries of
the same type, Po varies with the SOCs of batteries. Among
all IoT devices, smart-phones are necessities in our daily
life. Moreover, most smart-phones are Li-ion battery powered,
which motivates well taking a 1, 000 mAh Li-ion battery as
the charging target. The Li-ion battery charging profile, which
shows how the preferred charging current and voltage change
with the charging time, can be divided into 2 stages: the

Begin

Monitor output power Po and distance d

Control source power Ps

Finish charging

End

Charge battery

Beam power stimulation and transmission

Monitor charging time t

N

Y
Charging time cuts off ?

Update charging state

Fig. 4 The MET Flow in ARBC. The charging time of battery
is monitored at the receiver. If the time is not cut off, the
battery will keep being charged, and the SOC will keep
changing. Otherwise, if the charging time cuts off, the charging
procedure is finished.

constant current (CC) stage and the constant voltage (CV)
stage [24, 25].

To charge the Li-ion battery adaptively, the preferred
charging power should be computed in real time. To this end,
the preferred charging current and voltage should be obtained
at first. A 2-stage Li-ion battery charging profile was described
in [19, 24, 25]. We propose the following model to capture
the charging current I and voltage V over time

I =

{
1.0, 0 ≤ t < 1.2
aie

bit + cie
dit, 1.2 ≤ t < 3.6

,

V =

{
ave

bvt + cve
dvt, 0 ≤ t < 1.2

4.2, 1.2 ≤ t < 3.6

(3)

where t denotes the charging time, ai, bi, ci, di, and av , bv ,
cv , dv are some coefficients determined by characteristics of
the battery.

In Fig. 3, stars and diamonds depict the simulated battery
charging data from [19]. The dash line shows the variation
of charging current I , while the solid one that of charging
voltage V obtained from (3). As can be seen from the curves,
our model (3) agrees with the charging profile in [19].

Multiplying I and V in (3), the battery preferred charging
power, namely the target output power Po, can be defined as

Po = IV =

{
ave

bvt + cve
dvt, 0 ≤ t < 1.2

4.2(aie
bit + cie

dit), 1.2 ≤ t < 3.6.
(4)

Using (4), Po can be obtained for any given charging time
slot. For a certain SOC, the charging time instant can be
determined; hence, the battery preferred charging values can
be obtained.
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Fig. 5 Required source power Ps as a function of charging
distance d to produce constant output power Po (1, 3, and
5W).

C. Mobile Energy Transfer Process

When the ARBC system structure is fixed, the coefficients
in (2), (3), and (4) can be determined. According to (2), if
both d and Po are given, Ps can be computed to provide the
basis for the adaptive control in ARBC. The MET process of
ARBC is depicted in Fig. 4, with its main steps summarized
as follows.

S1) The power monitor tracks the SOC of the battery,
and the charging time t;

S2) If the charging time is cut off, the charging process
terminates; otherwise, turn to step S3);

S3) The power monitor obtains the preferred charging
power Po, and sends it back to the power controller through
the feedback channel;

S4) The power controller obtains the distance of the
receiver d to the transmitter;

S5) The power controller computes the source power Ps
based on Po and d, and requires Ps from the power source;

S6) The power source stimulates the gain medium, and
generates resonant beam, which transfers through the air to
the receiver;

S7) The beam power is converted into electric power at
the receiver. After being converted into the battery preferred
current and voltage by a DC-DC convertor, the electric power
is used to charge the battery; and,

S8) The SOC of the battery and the charging time t are
updated. Turn to step S1).

With this MET process, the battery can be charged at the
battery preferred charging current and voltage values, hence
power even in transit during the charging procedure.

III. PERFORMANCE EVALUATION

The empirical performance of MET is assessed in this
section. By default, only one receiver can be charged by a
single transmitter at the same time. The constant coefficients in
(2) can be readily obtained from [23, 26, 27], which are listed
in Table I. All experiments were performed using MATLAB.
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Fig. 6 Required source power Ps as a function of output power
Po over constant charging distance d (1, 3, and 5m).

A. ARBC Performance

From (2), it is clear that Ps depends on both Po and d.
When Po is given, we can simulate how Ps changes with d,
which is depicted in Fig. 5 for Po = 1W, 3W, and 5W. Plots
show that when transmitting power over a short distance, say
e.g., d ≤ 2m, the required source power Ps remains almost
a constant for fixed Po. As d increases, Ps grows quickly.
To provide a desired Po to the receiver, the required Ps grows
with d. For example, to charge the battery with Po = 3W over
a distance of 2m, an amount of 80W or so source power is
needed; if over a distance of 6m, about 150W source power is
required. To charge a battery over 6m, the required source
power is at least about 200W to provide with 5W battery
preferred power; it only takes slightly more than 100W source
power to provide 1W battery preferred power over the same
distance. Figure 5 provides us with guidelines for source power
and charging distance control to yield a desired output power
at the receiver side.

On the other hand, for a fixed distance d, source power
Ps scales linearly with Po; see Fig. 6. The dotted, dashed, and
solid lines show this linear relationship for d = 1m, 3m, and
5m, respectively. According to Fig. 5, we find that Ps admits
the slowest increase when d = 1m, while it grows at the fastest
pace when d = 5m. This agrees with the fact that the slope
of the solid line is larger than that of the dotted line in Fig. 6.
To obtain the preferred output power over a certain distance,

TABLE I Power Conversion Parameter

Parameter Value
m -3.5017
n 0.0795
f 0.88
r 1.5mm
λ 1064nm
l 65mm
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Fig. 7 The Li-ion battery charging power profile of CPC and
ARBC. That is, the changing characteristics of voltage-current
set values during the battery charging period.

A

B

Fig. 8 The ARBC transmitter’s coverage. The transmitter is
placed at point A; the farthest charging point (e.g., point B)
is at the circumference of the flat circle, which is centered at
point O.

Fig. 6 offers guidelines for source power adjustment.

B. Charging Power Profile

For a single cell Li-ion battery with 1, 000mAh capacity,
the parameters in model (3), or also in (4), take values listed
in Table II. Compliant with (4), the profile of battery preferred
charging power, i.e., the battery charging power profile, is

TABLE II Charging Profile Parameter

Parameter Value
ai 3.4
bi -1.263
ci 1.873×1013

di -26.61
av 168.4
bv -0.2903
cv -165.9
dv -0.3078
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Fig. 9 The source power consumed by different MET schemes.
The preferred output power and the charging distance may
be dynamically and randomly changing with the charging
duration in a charging process.

divided into the CC stage and the CV stage; see the dashed
line in Fig. 7. The battery preferred charging power is also
the optimal output power Po of the ARBC system. At the CC
stage, Po increases as the charging time passes. This is because
the charging voltage increases while the charging current is
kept fixed. Moreover, Po attains its maximum at the end of
the CC stage; see the star marker in Fig. 7. The CC stage is
followed by the CV stage, in which Po decreases quickly due
to the decrease of current yet with a constant voltage.

As a baseline, we consider a constant-power charging
(CPC) scheme, which refers to that the battery preferred
charging power keeps a constant power during the whole
charging procedure. To meet the power demand at each time
instant during the procedure, the constant value should be
greater than or equal to the peak power in the charging
procedure. The peak power, which is 4.2W (1.0A×4.2V), is
attained at the end of the CC stage marked by the star in Fig. 7.
The solid line depicts the profile of CPC.

To summarize, Fig. 7 describes the charging profiles of a
Li-ion battery using CPC and ARBC from the under-charged
state, which refers to the start of the CC stage, to the fully
charged state, i.e., the end of the CV stage.

C. Mobile Energy Transfer Performance

In a daily charging scenario, the battery of the device
requested for charging services can be at any SOC. Moreover,

TABLE III Charging Schemes

Scheme Acronym Scheme Description
CPC Constant-power charging
PAC Profile-adaptive charging
DAC Distance-adaptive charging

ARBC Adaptive resonant beam charging
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Fig. 10 Average energy consumption of CPC, PAC, DAC, and
ARBC schemes after running 1,000, 5,000, and 10,000 times.

the charging distance, namely the relative position between the
transmitter and the receiver, may be also changing during the
entire charging procedure. That is, as long as the receiver is
placed within the transmitter’s coverage, the charging distance
can be time-varying and take certain random values.

To evaluate the MET performance in a more realistic
environment, we simulate the mobile charging process by
giving a mobile Li-ion battery charging instance within a
certain coverage. To benchmark MET, we assume that the
maximum charging distance is 10m, and the maximum height
is 3m; see Fig. 8 for the coverage of the ARBC transmitter in
our considered setup. The transmitter is placed at point A; the
farthest charging point (e.g., point B) is at the circumference
of the flat circle, which is centered at point O with a radius of√
91. Given the charging distance and the maximum height,

the field of view (FOV) of the ARBC system is determined.
As can be seen, the spatial coverage of the transmitter is in
a cone shape. The receiver’s battery can be charged from any
position within the coverage of the transmitter.

In our MET example, a charging procedure consists of
multiple charging periods. In the first period, the battery is
charged at a random SOC, and it can be placed at a random
location e.g., point p1 in Fig. 8. After being charged for a
certain period, the battery randomly changes its position say
moving to point p2, and the second charging period begins.
If the charging procedure is not completed, the battery may
move to another place such as p3, so on and so forth. The
charging procedure will be terminated when it is interrupted
or the battery is fully charged.

Since the device often moves quickly from one position
to another, the time for realizing this movement is ignored
here for simplicity. Hence, the end time of a charging period
is just the beginning of the next one. Therefore, the initial
SOC in one period, but not the first period, is just the ending
SOC in the previous one. For a certain charging period, the
relative distance takes a certain value. But for all the periods,
the distance may take different value randomly. Moreover, we
assume that the battery is charged without any interruption
until it is fully charged.

To assess the MET performance, in addition to CPC, the
profile-adaptive charging (PAC) and distance-adaptive charg-
ing (DAC), were also simulated as baselines. The PAC scheme

DAC PAC CPC

Consumed
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ge
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Fig. 11 Average percentage of energy saved by ARBC com-
pared with DAC, PAC, and CPC.

supports charging the battery taking into consideration the
battery charging power profile over a certain distance, while
the DAC scheme prefers charging the battery with a fixed
power over randomly changing distances. The four charging
schemes (CPC, PAC, DAC, and ARBC) are listed in Table III.

For CPC, the battery preferred charging power is equal
to the peak preferred charging power, as the solid line shows
in Fig. 7. To be able to provide charging services for any
device within the coverage, the charging distance is set to be
10m, the maximum charging distance that the transmitter can
cover. Hence, using (2), the CPC required source power can
be computed. See the solid line in Fig. 9 for the source power
variation of CPC during the charging procedure. It is clear that
the solid line remains constant over time.

For PAC, the battery preferred charging power is time-
varying with the distance taking the maximum value. The
dot line in Fig. 9 shows the PAC preferred source power
variation during the charging procedure, which follows the
power-profile trend.

For DAC, the battery is charged with the peak preferred
power while in transit during the charging procedure. See
Fig. 9, the dash line depicts the DAC preferred source power
changing trend during the charging procedure. As can be
seen, the source power keeps the same during a certain
charging period. At different time slots, the charging distance
may be changed, and the preferred source power may vary
correspondingly.

For ARBC, both the charging profile and the charging
distance are taken into consideration when determining the
required amount of source power for output. The dash-dot line
plots the source power variation of ARBC during the charging
procedure in Fig. 9. It is clearly shown that the charging
distance takes the same value at a certain time slot, so the
dash-dot line maintains the charging power profile trend. The
charging distance at one time slot differs from the others.

From Fig. 9, in a certain charging time instant, CPC
requires the largest amount of source power, followed by PAC
and DAC, and ARBC requires the least power. However, only
one exemplary charging procedure is taken into consideration
in our MET instance. In daily charging scenarios, the initial
SOC of the being charged battery, the time slot, and the
charging distance may take random values. To evaluate the
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MET performance in daily scenarios, we simulate the afore-
mentioned mobile Li-ion battery charging instance for 1, 000,
5, 000, and 10, 000 times.

Figure 10 shows the average energy consumed by the four
schemes during the charging process in our simulation. Clear-
ly, the ARBC scheme consumes the least amount of energy
on average compared with the other charging schemes. For a
fixed charging scheme, the amount of energy consumed after
averaging over 1, 000, 5, 000, and 10, 000 Monte Carlo runs
remains almost the same. The average energy consumption of
CRC is about 530Wh, and that for PAC, DAC, and ARBC is
about 320Wh, 248Wh, and 150Wh, respectively.

See Fig. 11 for the average energy saving (in percentage)
of ARBC relative to other charging schemes. The average
energy saving achieved by the proposed charging scheme
maintains almost the same after simulating the charging
procedure for 1, 000, 5, 000, and 10, 000 times. ARBC can
save about 74.0%, 53.8%, and 43.7% source energy when
compared with CRC, PAC, and DAC, respectively.

IV. CONCLUSIONS

The concept of “mobile energy transfer (MET)” was
proposed in this paper. To implement MET, the source power
is controlled in an adaptive manner, aiming to provide battery
preferred charging power. The MET mechanism was presented
using the mobile Li-ion battery as an example, while the SOC
of the battery as well as the relative distance between the
transmitter and battery can take random values. Numerical
analysis show that about 74.0%, 53.8%, and 43.7% energy is
saved by ARBC relative to CPC, PAC, and DAC, respectively.

The present work also opens up several interesting direc-
tions for future research, which include evaluating the charging
schemes using commonly used batteries on prototype ARBC
systems, and investigating the limit of transmitting power.
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